551 research outputs found

    From tumour perfusion to drug delivery and clinical translation of in silico cancer models

    Get PDF
    In silico cancer models have demonstrated great potential as a tool to improve drug design, optimise the delivery of drugs to target sites in the host tissue and, hence, improve therapeutic efficacy and patient outcome. However, there are significant barriers to the successful translation of in silico technology from bench to bedside. More precisely, the specification of unknown model parameters, the necessity for models to adequately reflect in vivo conditions, and the limited amount of pertinent validation data to evaluate models' accuracy and assess their reliability, pose major obstacles in the path towards their clinical translation. This review aims to capture the state-of-the-art in in silico cancer modelling of vascularised solid tumour growth, and identify the important advances and barriers to success of these models in clinical oncology. Particular emphasis has been put on continuum-based models of cancer since they - amongst the class of mechanistic spatio-temporal modelling approaches - are well-established in simulating transport phenomena and the biomechanics of tissues, and have demonstrated potential for clinical translation. Three important avenues in in silico modelling are considered in this contribution: first, since systemic therapy is a major cancer treatment approach, we start with an overview of the tumour perfusion and angiogenesis in silico models. Next, we present the state-of-the-art in silico work encompassing the delivery of chemotherapeutic agents to cancer nanomedicines through the bloodstream, and then review continuum-based modelling approaches that demonstrate great promise for successful clinical translation. We conclude with a discussion of what we view to be the key challenges and opportunities for in silico modelling in personalised and precision medicine

    Measurements of the total transverse energy in pp collisions and a new technique for model independent missing transverse energy searches with ATLAS

    Get PDF
    This work studies proton-proton collision data recorded by the ATLAS detector at the LHC from 2010 to 2012. The bulk of the work concerns measurements of the sum of the transverse energy of particles as a function of their pseudorapidity, η, at a centre-of-mass energy √s = 7 TeV. These measurements are performed using the entire acceptance of the ATLAS detector, 0 < |η| < 4.8, and are split into two classes of event: one requiring the presence of low transverse momentum particles and the other requiring particles with a significant transverse momentum. In the latter case measurements are made in the region transverse in φ to the hard scatter. As such, both measurements are sensitive to non-perturbative QCD processes. Comparisons are made with the predictions from various Monte Carlo event generators, which generally underestimate the quantity of transverse energy at high η. This discrepancy is found to be dependent on the choice of Parton Distribution Function. A new technique for performing model independent missing transverse energy searches is presented. The ratio of the branching fractions between Z → νν and Z → μ+μ− processes is used, with deviation from the Standard Model prediction inferred as an indication of new physics. Preliminary Monte Carlo results are shown by way of proof-of-principle. In addition, technical measurements of the muon reconstruction efficiency of the ATLAS inner detector trigger algorithms are presented. An established technique is used to obtain unbiased results, and the performance of the algorithms discussed

    Ranking the Predictive Power of Clinical and Biological Features Associated With Disease Progression in Huntington's Disease

    Get PDF
    Huntington’s disease (HD) is characterised by a triad of cognitive, behavioural, and motor symptoms which lead to functional decline and loss of independence. With potential disease-modifying therapies in development, there is interest in accurately measuring HD progression and characterising prognostic variables to improve efficiency of clinical trials. Using the large, prospective Enroll-HD cohort, we investigated the relative contribution and ranking of potential prognostic variables in patients with manifest HD. A random forest regression model was trained to predict change of clinical outcomes based on the variables, which were ranked based on their contribution to the prediction. The highest-ranked variables included novel predictors of progression—being accompanied at clinical visit, cognitive impairment, age at diagnosis and tetrabenazine or antipsychotics use—in addition to established predictors, cytosine adenine guanine (CAG) repeat length and CAG-age product. The novel prognostic variables improved the ability of the model to predict clinical outcomes and may be candidates for statistical control in HD clinical studies

    In-silico dynamic analysis of cytotoxic drug administration to solid tumours: Effect of binding affinity and vessel permeability

    Get PDF
    The delivery of blood-borne therapeutic agents to solid tumours depends on a broad range of biophysical factors. We present a novel multiscale, multiphysics, in-silico modelling framework that encompasses dynamic tumour growth, angiogenesis and drug delivery, and use this model to simulate the intravenous delivery of cytotoxic drugs. The model accounts for chemo-, hapto- and mechanotactic vessel sprouting, extracellular matrix remodelling, mechano-sensitive vascular remodelling and collapse, intra- and extravascular drug transport, and tumour regression as an effect of a cytotoxic cancer drug. The modelling framework is flexible, allowing the drug properties to be specified, which provides realistic predictions of in-vivo vascular development and structure at different tumour stages. The model also enables the effects of neoadjuvant vascular normalisation to be implicitly tested by decreasing vessel wall pore size. We use the model to test the interplay between time of treatment, drug affinity rate and the size of the vessels endothelium pores on the delivery and subsequent tumour regression and vessel remodelling. Model predictions confirm that small-molecule drug delivery is dominated by diffusive transport and further predict that the time of treatment is important for low affinity but not high affinity cytotoxic drugs, the size of the vessel wall pores plays an important role in the effect of low affinity but not high affinity drugs, that high affinity cytotoxic drugs remodel the tumour vasculature providing a large window for the normalisation of the vascular architecture, and that the combination of large pores and high affinity enhances cytotoxic drug delivery efficiency. These results have implications for treatment planning and methods to enhance drug delivery, and highlight the importance of in-silico modelling in investigating the optimisation of cancer therapy on a personalised setting

    pySuStaIn: A Python implementation of the Subtype and Stage Inference algorithm

    Get PDF
    Progressive disorders are highly heterogeneous. Symptom-based clinical classification of these disorders may not reflect the underlying pathobiology. Data-driven subtyping and staging of patients has the potential to disentangle the complex spatiotemporal patterns of disease progression. Tools that enable this are in high demand from clinical and treatment-development communities. Here we describe the pySuStaIn software package, a Python-based implementation of the Subtype and Stage Inference (SuStaIn) algorithm. SuStaIn unravels the complexity of heterogeneous diseases by inferring multiple disease progression patterns (subtypes) and individual severity (stages) from cross-sectional data. The primary aims of pySuStaIn are to enable widespread application and translation of SuStaIn via an accessible Python package that supports simple extension and generalization to novel modeling situations within a single, consistent architecture

    A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease

    Get PDF
    Understanding the order and progression of change in biomarkers of neurodegeneration is essential to detect the effects of pharmacological interventions on these biomarkers. In Huntington’s disease (HD), motor, cognitive and MRI biomarkers are currently used in clinical trials of drug efficacy. Here for the first time we use directly compare data from three large observational studies of HD (total N = 532) using a probabilistic event-based model (EBM) to characterise the order in which motor, cognitive and MRI biomarkers become abnormal. We also investigate the impact of the genetic cause of HD, cytosine-adenine-guanine (CAG) repeat length, on progression through these stages. We find that EBM uncovers a broadly consistent order of events across all three studies; that EBM stage reflects clinical stage; and that EBM stage is related to age and genetic burden. Our findings indicate that measures of subcortical and white matter volume become abnormal prior to clinical and cognitive biomarkers. Importantly, CAG repeat length has a large impact on the timing of onset of each stage and progression through the stages, with a longer repeat length resulting in earlier onset and faster progression. Our results can be used to help design clinical trials of treatments for Huntington’s disease, influencing the choice of biomarkers and the recruitment of participants

    Ordinal SuStaIn: Subtype and Stage Inference for Clinical Scores, Visual Ratings, and Other Ordinal Data

    Get PDF
    Subtype and Stage Inference (SuStaIn) is an unsupervised learning algorithm that uniquely enables the identification of subgroups of individuals with distinct pseudo-temporal disease progression patterns from cross-sectional datasets. SuStaIn has been used to identify data-driven subgroups and perform patient stratification in neurodegenerative diseases and in lung diseases from continuous biomarker measurements predominantly obtained from imaging. However, the SuStaIn algorithm is not currently applicable to discrete ordinal data, such as visual ratings of images, neuropathological ratings, and clinical and neuropsychological test scores, restricting the applicability of SuStaIn to a narrower range of settings. Here we propose 'Ordinal SuStaIn', an ordinal version of the SuStaIn algorithm that uses a scored events model of disease progression to enable the application of SuStaIn to ordinal data. We demonstrate the validity of Ordinal SuStaIn by benchmarking the performance of the algorithm on simulated data. We further demonstrate that Ordinal SuStaIn out-performs the existing continuous version of SuStaIn (Z-score SuStaIn) on discrete scored data, providing much more accurate subtype progression patterns, better subtyping and staging of individuals, and accurate uncertainty estimates. We then apply Ordinal SuStaIn to six different sub-scales of the Clinical Dementia Rating scale (CDR) using data from the Alzheimer's disease Neuroimaging Initiative (ADNI) study to identify individuals with distinct patterns of functional decline. Using data from 819 ADNI1 participants we identified three distinct CDR subtype progression patterns, which were independently verified using data from 790 ADNI2 participants. Our results provide insight into patterns of decline in daily activities in Alzheimer's disease and a mechanism for stratifying individuals into groups with difficulties in different domains. Ordinal SuStaIn is broadly applicable across different types of ratings data, including visual ratings from imaging, neuropathological ratings and clinical or behavioural ratings data

    An image-based model of brain volume biomarker changes in Huntington's disease

    Get PDF
    Objective: Determining the sequence in which Huntington's disease biomarkers become abnormal can provide important insights into the disease progression and a quantitative tool for patient stratification. Here, we construct and present a uniquely fine-grained model of temporal progression of Huntington's disease from premanifest through to manifest stages. Methods: We employ a probabilistic event-based model to determine the sequence of appearance of atrophy in brain volumes, learned from structural MRI in the Track-HD study, as well as to estimate the uncertainty in the ordering. We use longitudinal and phenotypic data to demonstrate the utility of the patient staging system that the resulting model provides. Results: The model recovers the following order of detectable changes in brain region volumes: putamen, caudate, pallidum, insula white matter, nonventricular cerebrospinal fluid, amygdala, optic chiasm, third ventricle, posterior insula, and basal forebrain. This ordering is mostly preserved even under cross-validation of the uncertainty in the event sequence. Longitudinal analysis performed using 6 years of follow-up data from baseline confirms efficacy of the model, as subjects consistently move to later stages with time, and significant correlations are observed between the estimated stages and nonimaging phenotypic markers. Interpretation: We used a data-driven method to provide new insight into Huntington's disease progression as well as new power to stage and predict conversion. Our results highlight the potential of disease progression models, such as the event-based model, to provide new insight into Huntington's disease progression and to support fine-grained patient stratification for future precision medicine in Huntington's disease

    Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data

    Get PDF
    Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features using multidimensional data. Here, to classify MS subtypes based on pathological features, we apply unsupervised machine learning to brain MRI scans acquired in previously published studies. We use a training dataset from 6322 MS patients to define MRI-based subtypes and an independent cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the highest relapse rate. People with the lesion-led MS subtype show positive treatment response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS disability progression and response to treatment and may be used to define groups of patients in interventional trials

    Temporal Progression Patterns of Brain Atrophy in Corticobasal Syndrome and Progressive Supranuclear Palsy Revealed by Subtype and Stage Inference (SuStaIn)

    Get PDF
    Differentiating corticobasal degeneration presenting with corticobasal syndrome (CBD-CBS) from progressive supranuclear palsy with Richardson's syndrome (PSP-RS), particularly in early stages, is often challenging because the neurodegenerative conditions closely overlap in terms of clinical presentation and pathology. Although volumetry using brain magnetic resonance imaging (MRI) has been studied in patients with CBS and PSP-RS, studies assessing the progression of brain atrophy are limited. Therefore, we aimed to reveal the difference in the temporal progression patterns of brain atrophy between patients with CBS and those with PSP-RS purely based on cross-sectional data using Subtype and Stage Inference (SuStaIn)—a novel, unsupervised machine learning technique that integrates clustering and disease progression modeling. We applied SuStaIn to the cross-sectional regional brain volumes of 25 patients with CBS, 39 patients with typical PSP-RS, and 50 healthy controls to estimate the two disease subtypes and trajectories of CBS and PSP-RS, which have distinct atrophy patterns. The progression model and classification accuracy of CBS and PSP-RS were compared with those of previous studies to evaluate the performance of SuStaIn. SuStaIn identified distinct temporal progression patterns of brain atrophy for CBS and PSP-RS, which were largely consistent with previous evidence, with high reproducibility (99.7%) under cross-validation. We classified these diseases with high accuracy (0.875) and sensitivity (0.680 and 1.000, respectively) based on cross-sectional structural brain MRI data; the accuracy was higher than that reported in previous studies. Moreover, SuStaIn stage correctly reflected disease severity without the label of disease stage, such as disease duration. Furthermore, SuStaIn also showed the genialized performance of differentiation and reflection for CBS and PSP-RS. Thus, SuStaIn has potential for improving our understanding of disease mechanisms, accurately stratifying patients, and providing prognoses for patients with CBS and PSP-RS
    • …
    corecore